Measurement of ω / ϕ \rightarrow e⁺e⁻ in \sqrt{s} = 200GeV proton + proton collisions at RHIC - PHENIX

Kotaro Kijima
Hiroshima University
For the PHENIX Collaboration

motivation

- light vector meson production carries information about possible <u>mass</u> <u>modification</u> at Heavy ion collision at RHIC
 - Short life time ω :23fm/c ϕ :46fm/c

- proton + proton collision
 - baseline for the comparison to other decay mode and collision system.
 - Comparison with ω / φ → hadronic and → e⁺e⁻
 - Comparison with Au+Au, Cu+Cu, Au+d
- e⁺e⁻ decay channel
 - ✓ Electron is good probe
 - → Not interact strongly in the medium
 - √ 2-body decay
 - ✓ measured ω / ϕ at low pT, where modification is expected

analysis of $\omega / \phi \rightarrow e^+e^-$ at proton + proton collisions

PHENIX Detectors

Momentum measurement

Electron ID

PHENIX acceptance

 $-0.35 < \eta < 0.35, 0 < \phi < \pi$

- Electron is measured by central arm.
- Momentum measurement
 - DC, PC
- Electron ID
 - RICH(Ring Image Cherenkov detector)
 - Separation of electron and charged pion less 5.0GeV/c
 - EMCal
 - Ratio between Energy deposited to EMCal and momentum
 - Electron is E/p ~ 1

Reconstruction efficiency including acceptance and eID obtained by simulation based on GEANT.

trigger

- To require the electron event effectively
- ERT (Emcal Rich Trigger)
 - ERT is single electron trigger
 - geometrical coincidence between RICH and EMCal hit
- ERT trigger efficiency of ω and φ is obtained by simulation based on GEANT.

Thresold(EMCal) = 400MeV/c

ERT trigger efficiency for ω and ϕ meson.

Invariant mass spectrum

Invariant mass spectrum divided by pT

Fitting function is "Gaussian convoluted Relativistic Breit-Winger + BW + exponential".

We can see clear signal in $\omega/\phi \rightarrow e^+e^-$ channel at pT<4.0GeV/c.

Invariant cross section

 $\sqrt{s} = 200 \text{GeV}$ proton + proton collisions

First result on the ω / ϕ \rightarrow e⁺e⁻ in proton + proton at PHENIX. The result is consistent with hadronic decay channel within statistic and systematic error.

The spectra of ω and ϕ meson are measured in pT range from 0.5 to 13GeV/c and 0.5 to 5.5GeV/c, respectively.

summary and outlook

- The signal of ω / φ via di-electron pair at proton + proton collisions is seen clearly.
- Consistent with hadronic decay mode for both ω and φ mesons in p+p collisions.

- We should compare with other collision system (Au+Au, Cu+Cu, Au+d).
- Now ongoing!!

BACK UP

Invariant mass spectrum by simulation

Experimental mass resolution

pT	00.5	0.5-1.0	1.0-1.5	1.5 - 2.0	2.0-3.0	3.0-4.0
omega $[MeV/c^2]$	3.8	4.3	5.3	6.7	7.4	9.0
phi $[MeV/c^2]$	4.8	6.4	7.0	8.5	9.2	12.1

Invariant mass spectrum by simulation

Experimental mass resolution

рТ	00.5	0.5-1.0	1.0 - 1.5	1.5 - 2.0	2.0-3.0	3.0-4.0
omega $[MeV/c^2]$	3.8	4.3	5.3	6.7	7.4	9.0
phi MeV/c^2]	4.8	6.4	7.0	8.5	9.2	12.1

ERT electron trigger efficiency

conversion electron

- beampipe: radius 4cm, mass 20 MeV
- MVD support structures: radius 25cm, mass 120 MeV
- entrance window of He bag: radius 35-40cm, mass 220 MeV.

ω/π^0 , ϕ/π^0 ratio

